WIAS-HIiTNIHS: Software-tool for simulation in crystal growth
for SiC single crystal : Application and Methods

The International Congress of Nanotechnology and Nano , November 7-11, 2004

Oakland Convention Center, Oakland, San Francisco.
Jurgen Geiser

WIAS, Weierstrass Institute for Applied Analysis and Stochastics, Berlin

Jirgen Geiser 1



Introduction

Multi-dimensional and multi-physical problem in continuum me-
chanics for crystal growth process.

> Task : Simulation of a apparatus of a complex crystal growth
with heat- and temperature processes.

> Model-Problem : For the mathematical model we use coupled
diffusion-equations with 2 phases (gas and solid).

> Problems: Interface -Problems and material-parameters (different
material behaviors)

> Solution: Adapted material-functions and balance equations for
the interfaces.

> Methods: Implicit discretisations for the equations and nonlinear
solvers for the complex interface-functions.
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Motivation for the Crystal Growth

The applications are : Light-emitting diodes:
Blue laser: Its application in the DVD player
SiC sensors placed in car and engines

High qualified materials with homogene structures are claimed.
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Introduction to the model and the technical apparatus

SiC growth by physical vapor transport (PVT)

SiC-seed-crystal

Gas : 2000 - 3000 K
SiC-source-powder
insulated-graphite-crucible

coil for induction heating

polycrystalline SiC powder sublimates inside induction-heated graphite crucible at 2000 — 3000 K
and ~ 20 hPa

a gas mixture consisting of Ar (inert gas), Si, SiCs, Si2C), ... is created

an SiC single crystal grows on a cooled seed
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Problems of the technical apparatus

SiC growth by physical vapor transport (PVT)

Good crystal with

a perfect surface
But need of high energy

and apparatus costs

Bad crystal, with
wrong parameters for the heat

and temperature

optimization-problem

Solution : Technical simulation of the process and develop the optimal control of the process-

parameters.
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Coupling of the simpler models

e Heat conduction in gas, graphite, powder, crystal .
e Radiative heat transfer between cavities .

e Semi-transparent of crystal (band model) .

e Induction heat (Maxwell-equation) .

e Material-functions (complex material library) .

Further coupling with the next models

e Mass transport in gas, powder, graphite (Euler equation, porous media)
e Chemical transport in gas (reaction-diffusion)

e Crystal growth, sublimation of source powder,
decomposition of graphite (multiple free boundaries)
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Nonlinear heat conduction for the solid material (Solid-Phase)

Pl oTI+V g =, (1)
F = -k VT, (2)
j€{1,..., N} solid materials, N number of solid materials ,

0’: mass density,
¢l specific heat, T7: absolute temperature,

¢’: heat flux, x7: thermal conductivity,

f7: power density of heat sources (induction heating).
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Nonlinear heat conduction for the gas material (Gas-Phase)

ke{l,...,M} gas materials, M number of gas materials ,

p¥: mass density,

k. fi ' ber, R : ' |
Z™. contiguration number, . universal gas constants,
MP¥ : molecular mass, T%: absolute temperature,

g": heat flux, x¥: thermal conductivity .
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Magnetic scalar potential

The complex-valued magnetic scalar potential ¢ :

. { —iwo ¢ + 5% (inside k-th ring),

—iw T ¢ (other conductors).

Elliptic system of PDEs for ¢:

In insulators: —vdiv - ij;@ = 0.

In the k-th coll ring: —vdiv - V( ¢) 4+ Wffqb

27'('7“

In other conductors: —vdiv - ij;@b) + wfgb = 0.
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Magnetic Boundary conditions

Interface condition:

14 1al —
( ma;eera 1V(T¢)materia11) " Nmaterial; (5)
1% ial —
— ( ma;2r1a2v(r¢)material2) " Mmaterialy - (6)

Outer boundary condition: ¢ = 0.

v: magnetic reluctivity, material;: OUter unit normal of material;.
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Simulated phenomena

Axisymmetric heat source distribution

— Sinusoidal alternating voltage
— Correct voltage distribution to the coil rings
— Temperature-dependent electrical conductivity

Axisymmetric temperature distribution

— Heat conduction through gas phase and solid components of
growth apparatus

— Non-local radiative heat transport between surfaces of cavities

— Radiative heat transport through semi-transparent materials

— Convective heat transport
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Numerical models and methods

Induction heating:

— Determination of complex scalar magnetic potential from elliptic
partial differential equation
— Calculation of heat sources from potential

Temperature field:

— View factor calculation
— Band model of semi-transparency
— Solution of parabolic partial differential equation
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Discretization and implementation

Implicit Euler method in time

Finite volume method in space

— Constraint Delaunay triangulation of domain yields Voronoi cells
— Full up-winding for convection terms

— Very complicated nonlinear system of equations

— Solution by Newton's method using Krylow subspace techniques

Implementation tools:

— Program package
— Grid generator
— Matrix solver
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Discretization with finite Volumes and implicit Euler methods

Integral-formulation:

/ (U(T™tH —U(T™))dx — / km VT nds =0, (7)

Owm

where w,, is the cell of the node m and we use the following trial- and
test-functions :

" = Z T om(z) (8)

with ¢; are the standard globally finite element basis functions. The
second expression is for the finite volumes with

" = Z TTZSOM(CU) ; (9)
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where ¢, are piecewise constant discontinuous functions defined by
om(x) =1 for x € wy, and ¢, () = 0 otherwise. Domain w is the
union of the cells w,,,.
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Material Properties

For the gas-phase (Argon) we have the following parameters :

c. = 0.0
(1.839 10~ * 708004 T < 500K ,
y —7.1246.611072T —2.44107* T2 4+ 4.497107'T?
"TY —4.132100 7" 415141073 T 500K < T < 600K |
| 4.194 104 767! 600K > T,

For graphite felt insulation we have the functions :
o, =2.45104+9.8210°° T

p=1

70.0, p =1.0, c5p = 2100.0

((8.175 10724+ 2.48510°* T T < 1473K
—1.1910* +0.346 T — 3.99 10> T? + 2.28 10 3T
—6.45 107 T+ 7.25 107 T° 1473K < T < 1873K

| —0.74474+7.5107*T 1873K > T,
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Further Material Properties

For the Graphite we have the following functions :

oo =110*,
[ 0.67 T < 1200K
_ ] 3.752—7.436 107° T +6.416 10°° 7% — 2.33610 "' 7
=\ —3.0810° 37" 500K < T < 600K |
| 4.194 107* 70071 600K > T,

p=1750.0,, u = 1.0, csp = 1/(4.41110°T 23 4 7.9710~ 41 ~0-005)
k= 37.715exp(—1.96 10~* T)

For the SiC-Crystal we have the following functions :
o.= 10" ,e=0.85, p = 3140.0, p = 1.0
csp = 1/(3.9110* T3 1 1.835 1072 T %117 |
k = exp(9.892 + (2.498 10%) /T — 0.844 In(T))

For the SiC-Powder we have the following functions :
o.=100.0,€=0.85, p=1700.0, p = 1.0, ¢c5p = 1000.0 ,
k=1.45210"%+5.47 10" T°
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Numerical experiments

The numerical experiments are done with different material prop-
erties on a single computer.

The computational time for the finest case was about 2 h.

Level | Nodes | Cells | relative Li-error | Convergence rate
0 1513 2855
1 5852 | 11385 2.1 1072
2 23017 | 45297 1.25 1072 0.748
3 01290 | 181114 3.86 103 1.69
4 | 363587 | 724241 2.087 1073 0.887

Table 1: The relative Li-error with the standard finite Volume method.
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Nonlinear heat conduction for the gas material (Gas-Phase)
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Conclusions and future works

> Adaptive methods, error estimates.

> Higher order methods.

> Mass transport in gas (Euler equation for the porous media).
> Chemical reaction in gas (diffusion-reaction-equation).

> Crystal growth (multiple free boundaries).
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