Effect of Metal-doping of Nanoscale Maghemite on Cr(VI) Adsorption and Nanoparticle Dissolution

Jing Hu, Irene M. C. Lo and Guohua Chen

Environmental Engineering Program
Hong Kong University of Science and Technology

Presented at the International Congress of Nanotechnology, October 31-November 3, 2005 San Francisco
Outline

- Introduction
- Objectives
- Methodology
- Results and Discussions
- Conclusions
Introduction

Hexavalent chromium, Cr(VI):
Highly toxic but valuable
Priority pollutants defined by USEPA
Electroplating, acid mining, refining, petroleum plants
Technologies for heavy metal treatment

- **Chemical precipitation**
 - High equipment costs
 - Large consumption of reagents
 - Large volume of sludge
 - Ineffective recovery of treated metals
 - Potential hazard to environment

- **Ion exchange**
 - High capital and operating cost
 - Fouling
 - Pretreatment

- **Activated carbon adsorption**
 - Large intraparticle diffusion
 - High regeneration cost
 - Low regeneration efficiency
Magnetic nanoparticle adsorption

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Implications for industrial applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparatively large adsorption capacity</td>
<td>Superior removal</td>
</tr>
<tr>
<td>Very short adsorption time</td>
<td>Saved space, especially suitable for crowded cities</td>
</tr>
<tr>
<td>Easy to separate from treated water</td>
<td>Lower capital and operating costs</td>
</tr>
<tr>
<td>Simple to desorb</td>
<td>Easy technical adaptation and maintenance</td>
</tr>
<tr>
<td>No secondary pollution</td>
<td>No potential environmental concern</td>
</tr>
</tbody>
</table>
Maghemite nanoparticles for Cr(VI) removal

Cr(VI) adsorption equilibrium time = 10 min; 50 mg/L of Cr(VI) was reduced to be 0.05 mg/L, below discharge limit.
How to enhance adsorption?

1. Metal-doping technique
 - Increase in surface area or active sites
 - Simple modification method
 - Other parameters not impaired significantly, e.g., adsorption rate, magnetic properties
 - Stable nanoparticles

2. Inorganic coating technique
Objectives

- Promotion of adsorption by metal-doping
- Inhibition of dissolution by metal-doping
- Mechanism studies by Raman spectroscopy
Materials and Methods

❖ **Adsorbent**
 Metal-doped γ -Fe$_2$O$_3$ nanoparticle (Me= Al, Mg, Cu, Zn, Ni)

❖ **Adsorbate**
 100 mg/L K$_2$CrO$_4$ + 0.1 M NaNO$_3$

❖ **Batch test**
 Experimental conditions: contact time: 60 min; pH: 2.5;
 shaking rate: 200 rpm; room temperature: 25°C

❖ **Mechanism study**
 Sample for Raman: 5, 50, 100 mg/L Cr(VI) at pH 2.5, 6.5, 8.5
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Analytical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>ICP</td>
</tr>
<tr>
<td>pH</td>
<td>pH Meter</td>
</tr>
<tr>
<td>Zeta potential</td>
<td>ZETA PLUS</td>
</tr>
<tr>
<td>Particle dimension</td>
<td>TEM</td>
</tr>
<tr>
<td>Particle structure</td>
<td>XRD</td>
</tr>
<tr>
<td>Elemental analysis</td>
<td>XRF</td>
</tr>
<tr>
<td>Complexation</td>
<td>Raman spectroscopy</td>
</tr>
<tr>
<td>Surface area</td>
<td>BET Analyzer</td>
</tr>
<tr>
<td>Magnetism</td>
<td>VSM</td>
</tr>
</tbody>
</table>
Raman spectroscopic studies

- Establish symmetry of surface species
- Distinguish inner-sphere from outer-sphere

 (David et al., 1978; Tejedor and Anderson, 1990)

- Raman spectroscopic data about PO$_4^{3-}$, CO$_3^{2-}$, SeO$_4^{2-}$, SO$_4^{2-}$, and AsO$_4^{2-}$ adsorption onto Fe/Al oxides available

 (Schulthess and McCarthy, 1990; Su and Suarez, 1998; Wijnja and Cristian, 2000; Goldberg and Johnston, 2001)

- Little detailed information on Raman spectroscopic study of CrO$_4^{2-}$ adsorption onto (modified) iron oxide
Modification of synthesizing methods

- Precipitation method

 Fe$^{2+}$, Fe$^{3+}$, NH$_4$OH
 pH 8.0
 Magnetite particle
 Calcination: 250°C oven
 Maghemite aggregate
 Grinding
 Maghemite nanoparticles
 (> 30 nm, < 80 m2/g)

- Sol-gel method

 Fe$^{2+}$, Fe$^{3+}$, NH$_4$OH (or +Me)
 pH 8.0 (or 10)
 Surfactant
 Magnetite particle
 Oil bath
 Octyl ether
 Maghemite nanogel
 Ethanol washing
 Maghemite nanoparticles
 (< 20 nm, ~ 250 m2/g)
Nanoparticle Synthesis Method (sol-gel)

1.5 M \(\text{NH}_4 \text{OH} \)

\(\text{N}_2 \) gas

\(\text{Al-doped magnetite (Fe}_3\text{O}_4) \)

Thermocouple

250°C oil bath

\(\text{Al-doped maghemite (γ-Fe}_2\text{O}_3) \)
TEM images of Al-doped γ-Fe$_2$O$_3$

Doping of Al results in preferential crystal growth along [100] direction producing irregular shaped, platy particles, at expense of crystal thickness (Schulze, 1984)
A definite proof of structural incorporation can be produced from a shift in position of XRD peaks, but doping would not change original structure.
Hysteresis loops of Al-doped γ-Fe_2O_3

Magnetic properties decreased with increasing Al dosage.
Al-, Cu- and Mg-doping enhanced adsorption capacity; while Cu- and Ni-doping decreased adsorption capacity of previous γ-Fe₂O₃.
Adsorption and separation

<table>
<thead>
<tr>
<th>Al/(Al+Fe)</th>
<th>Surface area</th>
<th>Adsorption efficiency</th>
<th>Equilibrium time</th>
<th>Magnetic properties</th>
<th>Separation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%)</td>
<td>(m²/g)</td>
<td>(%)</td>
<td>(min)</td>
<td>(emu)</td>
<td>(min)</td>
</tr>
<tr>
<td>0</td>
<td>162</td>
<td>79.8</td>
<td>10</td>
<td>3.48</td>
<td>0.1</td>
</tr>
<tr>
<td>7.5</td>
<td>182</td>
<td>84.3</td>
<td>25</td>
<td>2.26</td>
<td>0.5</td>
</tr>
<tr>
<td>9.3</td>
<td>191</td>
<td>86.7</td>
<td>30</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>11.0</td>
<td>198</td>
<td>87.5</td>
<td>60</td>
<td>1.14</td>
<td>5</td>
</tr>
<tr>
<td>13.1</td>
<td>210</td>
<td>88.9</td>
<td>90</td>
<td>/</td>
<td>10</td>
</tr>
</tbody>
</table>
Adsorption mechanism (Raman)

— Cr(VI) adsorption onto Al-doped γ-Fe$_2$O$_3$

Vibrations for the free CrO$_4^{2-}$ are all Raman active: the nondegenerate v_1 at 848 cm$^{-1}$, the doubly degenerate v_2 at 342 cm$^{-1}$, the triply degenerate v_3 at 882 cm$^{-1}$, and the triply degenerate v_4 at 365 cm$^{-1}$
Raman spectra

Effect of pH

100 mg/L Cr(VI) + 5 g/L Al-doped γ-Fe$_2$O$_3$
at pH 2.5, 6.5, 8.5
Raman spectra
— Effect of surface loading

5, 50, 100 mg/L Cr(VI) + 5 g/L Al-doped γ-Fe₂O₃ at pH 2.5

Counts

Raman shift (cm⁻¹)
Vibrations between CrO$_4^{2-}$ and Al-doped γ-Fe$_2$O$_3$

Species	Cr(VI) (mg/L)	pH	Frequency (cm$^{-1}$)	v_1	v_2	v_3	v_4
K$_2$CrO$_4$ (aq)							
Al-doped γ-Fe$_2$O$_3$	5	2.5		837	331	867	912
Al-doped γ-Fe$_2$O$_3$	50	2.5		835	331	868	894
Al-doped γ-Fe$_2$O$_3$	100	2.5		831	338	858	876
Al-doped γ-Fe$_2$O$_3$	100	6.5		840	341	863	932
Al-doped γ-Fe$_2$O$_3$	100	8.5		848	339		
Inner-sphere complex between Cr(VI) and Al-doped γ-Fe$_2$O$_3$

Monodentate

Bidentate mononuclear*

Bidentate binuclear*

(* Together with data from Hiemstra et al., 1989; McBride, 1994; Fendorf et al., 1997; Wijnja and Schuthess, 2000)
Adsorption isotherms

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>q_m (mg/g)</th>
<th>b (L/mg)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-doped γ-Fe$_2$O$_3$</td>
<td>22.68</td>
<td>0.138</td>
<td>0.993</td>
</tr>
<tr>
<td>Pure γ-Fe$_2$O$_3$</td>
<td>19.42</td>
<td>0.319</td>
<td>0.997</td>
</tr>
</tbody>
</table>
Comparison of adsorbents

<table>
<thead>
<tr>
<th>Type of adsorbents</th>
<th>q_m (mg/g)</th>
<th>Equilibrium time (h)</th>
<th>Optimum pH</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coconut tree sawdust</td>
<td>3.46</td>
<td>3</td>
<td>3.0</td>
<td>(Selvi et al., 2001)</td>
</tr>
<tr>
<td>Lignin</td>
<td>5.64</td>
<td>24</td>
<td>2.5</td>
<td>(Lalvani et al., 2000)</td>
</tr>
<tr>
<td>Distillery sludge</td>
<td>5.7</td>
<td>1.75</td>
<td>3.0</td>
<td>(Selvaraj et al., 2003)</td>
</tr>
<tr>
<td>Blast-furnace slag</td>
<td>7.5</td>
<td>6</td>
<td>1.0</td>
<td>(Srivastava et al., 1997)</td>
</tr>
<tr>
<td>Diatomite</td>
<td>11.55</td>
<td>2</td>
<td>3.0</td>
<td>(Dantas et al., 2001)</td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td>11.7</td>
<td>8</td>
<td>4.0</td>
<td>(Gupta et al., 1999)</td>
</tr>
<tr>
<td>Anatase</td>
<td>14.56</td>
<td>24</td>
<td>2.5</td>
<td>(Weng et al, 1997)</td>
</tr>
<tr>
<td>Activated carbon</td>
<td>15.47</td>
<td>3</td>
<td>4.0</td>
<td>(Sandhya and Tonni, 2004)</td>
</tr>
<tr>
<td>Beech sawdust</td>
<td>16.13</td>
<td>1.33</td>
<td>1.0</td>
<td>(Acar and Malkoc, 2004)</td>
</tr>
<tr>
<td>Hazelnut shell</td>
<td>17.7</td>
<td>5</td>
<td>2.0</td>
<td>(Cimino et al., 2000)</td>
</tr>
<tr>
<td>Spent grain</td>
<td>18.94</td>
<td>8</td>
<td>2.0</td>
<td>(Low et al., 2001)</td>
</tr>
<tr>
<td>Al-doped γ-Fe$_2$O$_3$</td>
<td>22.68</td>
<td>0.5</td>
<td>2.5</td>
<td>Present study</td>
</tr>
<tr>
<td>Larch bark</td>
<td>31.25</td>
<td>48</td>
<td>3.0</td>
<td>(Aoyama and Tsuda, 2001)</td>
</tr>
</tbody>
</table>

Note: Cr(VI) Adsorption capacity and equilibrium time at room temperature of 22.5 ± 2.5°C
1) Al-O bond energy (513 kJ mol\(^{-1}\)) > Fe-O bond energy (390 kJ mol\(^{-1}\)),

2) More energy to remove simultaneously two center atoms due to effect of binuclear complexes (Cornell et al., 2003)
Conclusions

- Optimal Al dosage is 9.3 mol%
- Enhanced adsorption capacity from 19.4 mg/g to 22.7 mg/g by Al-doping
- *Insignificant* nanoparticle dissolution under experimental condition; Al-doping inhibited dissolution by 30%
- Complexation changed from outer-sphere into *inner-sphere complexation* by Al-doping
Thank you